Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 03-019

Multi-Objective Hypergraph Partitioning Algorithms for Cut and
Maximum Subdomain Degree Minimization

Navaratnasothie Selvakkumaran and George Karypis

April 17, 2003

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
17 APR 2003 2. REPORT TYPE _
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER

M ulti-Objective Hyper graph Partitioning Algorithmsfor Cut and
Maximum Subdomain Degree Minimization

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Army High Performance Computing Resear ch Center ,Department of REPORT NUMBER

Computer Science and Engineering,University of
Minnesota,Minneapolis,M N,55455

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 10
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Multi-Objective Hypergraph Partitioning Algorithms for Cut
and Maximum Subdomain Degree Minimization -

Navaratnasothie Selvakkumaran and George Karypis
University of Minnesota
Department of Computer Science / Army HPC Research Center
Minneapolis, MN 55455
Technical Report # 03-019

{selva,karypis}@cs.umn.edu

ABSTRACT

In this paper we present a family of multi-objective hy-
pergraph partitioning algorithms based on the multilevel
paradigm, which are capable of producing solutions in which
both the cut and the maximum subdomain degree are simul-
taneously minimized. This type of partitionings are critical
for existing and emerging applications in VLSI CAD as they
allow to both minimize and evenly distribute the intercon-
nects across the physical devices. Our experimental evalu-
ation on the ISPD98 benchmark show that our algorithms
produce solutions that when compared against those pro-
duced by hMEILS have a maximum subdomain degree that is
lower by 5% to 54% while achieving comparable quality in
terms of cut.

Categoriesand Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms

Algorithms, Experimentation

Keywords

Partitioning, Maximum degree, Placement, Congestion

1. INTRODUCTION

Hypergraph partitioning is an important problem with ex-
tensive applications to many areas, including VLSI design
[5], efficient storage of large databases on disks [23], infor-
mation retrieval [28], and data mining [9, 15]. The problem
is to partition the vertices of a hypergraph into k equal-size
subdomains, such that the number of the hyperedges con-
necting vertices in different subdomains (called the cut) is
minimized.

*This work was supported by NSF ACI-0133464, CCR-

9972519, EIA-9986042, ACI-9982274, and by Army HPC
Research Center contract number DAAD19-01-2-0014.

The importance of the problem has attracted a considerable
amount of research interest and over the last thirty years
a variety of heuristic algorithms have been developed that
offer different cost-quality trade-offs. The survey by Alpert
and Kahng [5] provides a detailed description and compari-
son of various such schemes. Recently a new class of hyper-
graph partitioning algorithms has been developed [8, 11, 2,
14, 4], that are based upon the multilevel paradigm. In these
algorithms, a sequence of successively smaller hypergraphs
is constructed. A partitioning of the smallest hypergraph is
computed. This partitioning is then successively projected
to the next level finer hypergraph, and at each level an iter-
ative refinement algorithm (e.g., KL [18] or FM [10]) is used
to further improve its quality. Experiments presented in [2,
14, 4, 26, 3, 6, 17] have shown that multilevel hypergraph
partitioning algorithms can produce substantially better so-
lutions than those produced by non-multilevel schemes.

However, despite the success of multilevel algorithms in pro-
ducing partitionings in which the cut is minimized, this cut
is not uniformly distributed across the different subdomains.
That is, the number of hyperedges that are being cut by a
particular subdomain (referred to as the subdomain degree)
is significantly higher than that cut by other subdomains.
This illustrated in Table 1 that shows the ratios of the max-
imum subdomain degree over the average subdomain de-
gree of various k-way partitionings obtained for the ISPD98
benchmark [3] using the state-of-the-art hMELS [16] multi-
level hypergraph partitioning algorithm. In many cases, the
resulting partitionings contain subdomains whose degree is
up to two times higher than the average degree of the re-
maining subdomains.

For many existing and emerging applications in VLSI CAD,
producing partitioning solutions that both minimize the cut
and also minimize the maximum subdomain degree is of
great importance. For example, EDA tools for existing
FPGA devices and emerging deep sub-micron architectures
need to both minimize the number of interconnects (which
is achieved by minimizing the cut) and also evenly distribute
these interconnects across the physical device to eliminate
high density interconnect regions (which is achieved by min-
imizing the maximum subdomain degree).

In this paper we present a family of hypergraph partitioning
algorithms based on the multilevel paradigm that are capa-

4-way | 8-way | 16-way | 32-way | 64-way
ibm01 1.27 1.55 1.60 1.70 1.76
ibm02 1.35 1.35 1.43 1.51 1.55
ibm03 1.18 1.43 1.68 1.70 1.84
ibm04 1.28 1.35 1.41 1.72 2.39
ibm05 1.16 1.17 1.24 1.33 1.41
ibm06 1.22 1.46 1.46 1.50 1.63
ibm07 1.29 1.46 1.79 1.94 2.04
ibm08 1.06 1.22 1.45 1.73 2.12
ibm09 1.09 1.23 1.65 1.91 2.31
ibm10 1.23 1.43 1.69 1.78 1.85
ibm11 1.21 1.55 1.54 1.66 2.02
ibm12 1.26 1.47 1.72 2.10 2.15
ibm13 1.31 1.81 1.66 1.91 1.85
ibm14 1.20 1.47 1.46 1.63 1.96
ibm15 1.28 1.51 1.71 1.87 2.09
ibm16 1.22 1.39 1.45 1.70 1.84
ibm17 1.18 1.42 1.52 1.80 2.13
ibm18 1.16 1.61 2.33 2.65 2.78

Table 1: The ratios of the maximum subdomain de-
gree over the average subdomain degree of various
solutions for the ISPD98 benchmark.

ble of producing solutions in which both the cut and the
maximum subdomain degree are simultaneously minimized.
Our algorithms treat the minimization of the maximum sub-
domain degree as a multi-objective optimization problem
that is solved once a high-quality, cut based, k-way parti-
tioning has been obtained. Toward this goal, we present
highly effective multi-objective refinement algorithms that
are capable to produce solutions that explicitly minimize
the maximum subdomain degree and ensure that the cut
does not significantly increase.

This approach has a number of inherent advantages. First,
by building upon a cut-based k-way partitioning, it lever-
ages the huge body of existing research on this topic, and it
can benefit from future improvements. Second, because the
initial k-way solution is of extremely high-quality, it allows
the algorithm to focus on minimizing the maximum subdo-
main degree without being overly concerned about the cut
of the final solution. Finally, it provides a user-adjustable
and predictable framework in which the user can specify how
much (if any) deterioration on the cut he or she is willing to
tolerate in order to reduce the maximum subdomain degree.

We experimentally evaluated the performance of these algo-
rithms on the ISPD98 [3] benchmark and compared them
against the solutions produced by hMELS [16]. Our experi-
mental results show that our algorithms are capable of pro-
ducing solutions whose maximum subdomain degree is lower
by 5% to 54% while producing comparable solutions in terms
of cut. Moreover, the computational complexity of these al-
gorithms is relatively low, requiring on the average no more
than twice the amount of time required by hMELS.

The rest of the paper is organized as follows. Section 2
provides some definitions and describes the notation that is
used throughout the paper. Section 3 describes the various
aspects of our algorithms. Section 4 experimentally eval-
uates these algorithms and compares them against hMEIS.
Finally, Section 5 provides some concluding remarks and
outlines directions of future research.

2. DEFINITIONS AND NOTATION

A hypergraph G = (V,E) is a set of vertices V and a set
of hyperedges E. Each hyperedge is a subset of the set of
vertices V. The size of a hyperedge is the cardinality of this
subset. A vertex v is said to be incident on a hyperedge
e, if v € e. Each vertex v and hyperedge e has a weight
associated with them and they are denoted by w(v) and
w(e), respectively.

A decomposition of V into k disjoint subsets V1, Va,... , Vi,
such that | J, Vi =V is called a k-way partitioning of V. We
will use the terms subdomain or partition to refer to each
one of these k sets. A k-way partitioning of V is denoted
by a vector P such that P[i] indicates the partition number
that vertex ¢ belongs to. We say that a k-way partition-
ing of V satisfies a balancing constraint specified by (I, u],
where I < u, if for each subdomain V;, I <37 .\, w(v) < w.
The cut of a k-way partitioning of V is equal to the sum
of the weights of the hyperedges that contain vertices from
different subdomains. The subdomain degree of V; is equal
to the sum of the weights of the hyperedges that contain
at least one vertex in V; and one vertex in V — V;. The
mazimum subdomain degree of a k-way partitioning is the
highest subdomain degree over all k£ partitions. The sum-
of-external-degrees (abbreviated as SOED) of a k-way parti-
tioning is equal to the sum of the subdomain degrees of all
the partitions.

Given a k-way partitioning of V and a vertex v € V that
belongs to partition V;, its internal degree denoted by ID;(v)
is equal to the sum of the weights of its incident hyperedges
that contain only vertices from V;, and its external degree
with respect to partition V; denoted by ED;(v) is equal to
the sum of the weights of its incident hyperedges whose all
remaining vertices belong to partition V.

The k-way hypergraph partitioning problem is defined as fol-
lows. Given a hypergraph G = (V, E) and a balancing con-
straint specified by [l, u], compute a k-way partitioning of V'
such that it satisfies the balancing constraint and minimizes
the cut. The requirement that the size of each partition sat-
isfies the balancing constraint is referred to as the partition-
ing constraint, and the requirement that a certain function
is optimized is referred to as the partitioning objective.

3. MINIMIZING THE MAXIMUM SUBDO-
MAIN DEGREE

There are two different approaches for computing a k-way
partitioning of a hypergraph. One is based on recursive bi-
sectioning and the other on direct k-way partitioning [13].
In recursive bisectioning, the overall partitioning is obtained
by initially bisecting the hypergraph to obtain a two-way
partitioning. Then, each of these parts is further bisected
to obtain a four-way partitioning, and so on. Assuming
that k is a power of two, then the final k-way partitioning
can be obtained in log(k) such steps (or after performing
k — 1 bisections). In this approach, each partitioning step
usually takes into account information from only two par-
titions, and as such it does not have sufficient information
to explicitly minimize the maximum subdomain degree of
the resulting k-way partitioning. In principle, additional in-
formation can be propagated down at each bisection level

to account for the degrees of the various subdomains. For
example, during each bisection step, the change in the de-
grees of the adjacent subdomains can be taken into account
(either explicitly or via variations of terminal-propagation-
based techniques [12]) to favor solutions that in addition
to minimizing the cut also reduce these subdomain degrees.
However, the limitation of such approaches is that they end-
up over-constraining the problem because not only they try
to reduce the maximum subdomain degree of the final k-
way partitioning, but they also try to reduce the maximum
degree of the intermediate lower-k partitioning solutions.

For this reason, approaches based on direct k-way parti-
tioning are better suited for the problem of minimizing the
maximum subdomain degree, as they provide a concurrent
view of the entire k-way partitioning solution. The ability
of direct k-way partitioning to optimize objective functions
that depend on knowing how the hyperedges are partitioned
across all k partitions has been recognized by various re-
searchers, and a number of different algorithms have been
developed to minimize objective functions such as the sum-
of-external-degrees, scaled cost, absorption etc. [21, 5, 7, 17,
25]). Moreover, direct k-way partitioning can potentially
produce much better solutions than a method that com-
putes a k-way partitioning via recursive bisection. In fact,
in the context of a certain classes of graphs it was shown
that recursive bisectioning can be up to an O(logn) factor
worse than the optimal solution [24].

However, despite the inherent advantage of direct k-way par-
titioning to naturally model much more complex objectives,
and the theoretical results which suggest that it can lead
to superior partitioning solutions, a number of studies have
shown that existing direct k-way partitioning algorithms for
hypergraphs, produce solutions that are in general inferior
to those produced via recursive bisectioning [21, 7, 17, 25].
The primary reason for that is the fact that computationally
efficient k-way partitioning refinement algorithms are often
trapped into local minima, and usually require much more
sophisticated and expensive optimizers to climb out of them.

To overcome these conflicting requirements and characteris-
tics, our algorithms for minimizing the maximum subdomain
degree combine the best features of the recursive bisection-
ing and direct k-way partitioning approaches. We achieve
this by treating the minimization of the maximum subdo-
main degree as a post-processing problem to be performed
once a high-quality k-way partitioning has been obtained.
Specifically, we use existing state-of-the-art multilevel-based
techniques [14, 16] to obtain an initial k-way solution via re-
peated bisectioning, and then refine this solution using vari-
ous k-way partitioning refinement algorithms that (i) explic-
itly minimize the maximum subdomain degree, (ii) ensure
that the cut does not significantly increase, and (iii) ensure
that the balancing constraints of the resulting k-way parti-
tioning are satisfied.

This approach has a number of inherent advantages. First,
by building upon a cut-based k-way partitioning, it leverages
the huge body of existing research on this topic, and it can
benefit from future improvements. Second, in terms of cut,
its initial k-way solution is of extremely high-quality, thus
allowing us to primarily focus on minimizing the maximum

subdomain degree without being overly concerned about the
cut of the final solution (as long as the partitioning is not sig-
nificantly perturbed). Third, it allows for a user-adjustable
and predictable framework in which the user can specify how
much (if any) deterioration on the cut he or she is willing to
tolerate in order to reduce the maximum subdomain degree.

To actually perform the maximum subdomain-degree fo-
cused k-way refinement we developed two classes of algo-
rithms. Both of them treat the problem as a multi-objective
optimization problem but they differ on the starting point
of that refinement. Details on the exact multi-objective for-
mulation and the refinement algorithms are provided in the
rest of this section.

3.1 Multi-Objecti ve Formulation

In general, the objectives of producing a k-way partitioning
that both minimizes the cut and the maximum subdomain
degree are reasonably well correlated with each other, as par-
titionings with low cuts will also tend to have low maximum
subdomain degrees. However, this correlation is not perfect,
and these two objectives can actually be at odds with each
other. That is, a reduction in the maximum subdomain de-
gree may only be achieved if the cut of the partitioning is
increased. This situation arises with vertices that are adja-
cent to vertices that belong to more than two subdomains.
For example, consider a vertex v that belongs to the max-
imum degree partition V; and let V; and V, be two other
partitions such that v is connected to vertices in V;, V;, and
V;. Now, if EDq(v) — ID;(v) < 0 and ED,(v) — ID;(v) < 0,
then the move of v to either partitions V5 or V, will increase
the cut but if EDg4(v) + ED,(v) — ID;(v) > 0, then moving
v to either V; or V, will actually decrease V;’s subdomain
degree. Thus, in order to develop effective algorithms that
explicitly minimize the maximum subdomain degree and the
cut, these two objectives need to be coupled together into a
multi-objective framework that allows the optimization al-
gorithm to intelligently select the preferred solution.

The problem of multi-objective optimization within the con-
text of graph and hypergraph partitioning has been exten-
sively studied in the literature [22, 1, 27, 20, 19] and two
general approaches have been developed for combining mul-
tiple objectives. The first approach keeps the different ob-
jectives separate and couples them by assigning to them
different priorities. Essentially in this scheme, a solution
that optimizes the highest priority objective the most is al-
ways preferred and the lower priority objectives are used as
tie-breakers (i.e., used to select among equivalent solutions
in terms of the higher priority objectives). The second ap-
proach creates an explicit multi-objective function that nu-
merically combines the individual functions. For example,
a multi-objective function can be obtained as the weighted
sum of the individual objective functions. In this scheme,
the choice of the weight values is used to determine the rel-
ative importance of the various objectives. One of the ad-
vantages of such an approach is that it tends to produce
somewhat more natural and predictable solutions as it will
prefer solutions that to certain extent, optimize all different
objective functions.

In our algorithms we used both of these methods to com-
bine the two different objectives. Specifically, our priority-

based scheme produces a multi-objective solution in which
the maximum subdomain degree is the highest priority ob-
jective and the cut is the second highest. This choice of
priorities was motivated by the fact that within our frame-
work, the solution is already at a local minima in terms of
cut; thus, focusing on the maximum subdomain degree is
a natural choice. Our combining multi-objective function
couples the different objectives using the following formula

Cost = a(MaximumDegree) + 3(Cut), (1)

where MazimumDegree is the maximum subdomain degree,
Cut is the hyperedge cut, and o and 8 are two user-specified
weights indicating the relative importance of these objec-
tives.

In addition, in both of these schemes, we break ties in favor
of solutions that lead to lower sum-of-external-degrees. This
was motivated by the fact that lower SOED solutions may
lead to subsequent improvements in either one of the main
objective functions. Also, if a gain of the move is tied even
after considering SOED, the ability of the move to improve
area balancing is considered for tie breaking.

3.2 DirectMulti-Phase Refinement

Our first k-way refinement algorithm for the multi-objective
problem formulations described in Section 3.1 is based on
the multi-phase refinement approach implemented by hMERS
and was initially described in [14]. The idea behind multi-
phase refinement is quite simple. It consists of two phases,
namely a coarsening and an uncoarsening phase. The un-
coarsening phase is identical to the uncoarsening phase of
the multilevel hypergraph partitioning algorithm [14]. The
coarsening phase, called restricted coarsening [14], however
is somewhat different, as it preserves the initial partitioning
that is input to the algorithm. Given a hypergraph G and
a partitioning P, during the coarsening phase a sequence
of successively coarser hypergraphs and their partitionings
is constructed. Let (G;, P;) for i = 1,2,...,m, be the se-
quence of hypergraphs and partitionings. Given a hyper-
graph G; and its partitioning P;, restricted coarsening will
collapse vertices together that belong to only one of the two
partitions. The partitioning P;;1 of the next level coarser
hypergraph G;4+1 is computed by simply inheriting the par-
tition from G;. By constructing Git1 and Piyi in this way
we ensure that the number of hyperedges cut by the parti-
tioning is identical to the number of hyperedges cut by P;
in G;. The set of vertices to be collapsed together in this
restricted coarsening scheme can be selected by using any
of the coarsening schemes that have been previously devel-
oped [14]. In our algorithm, we use the first-choice scheme
described in [17], as it leads to the best overall solutions [16].

Due to the randomization in the coarsening phase, succes-
sive runs of the multi-phase refinement algorithm can lead
to additional improvements of the partitioning solution. For
this reason, in our algorithm we perform multiple such iter-
ations and the entire process is stopped when the solution
quality does not improve in successive iterations. Such an
approach is identical to the V-cycle refinement algorithm
used by hMEILS [16].

The actual k-way partitioning refinement at a given level
during the uncoarsening phase is performed using a greedy

algorithm that is motivated by a similar algorithm using
in the direct k-way partitioning algorithm of hMELS. More
precisely, the greedy k-way refinement algorithm works as
follows. Consider a hypergraph G = (V, E), and its parti-
tioning vector P. The vertices are visited in a random order.
Let v be such a vertex, let P[v] = a be the partition that v
belongs to. If v is a node internal to partition a then v is not
moved. If v is at the boundary of the partition, then v can
potentially be moved to one of the partitions N (v) that ver-
tices adjacent to v belong to (the set N (v) is often refer to as
the neighborhood of v). Let N'(v) be the subset of N(v) that
contains all partitions b such that movement of vertex v to
partition b does not violate the balancing constraint. Now
the partition b € N’(v) that leads to the greatest positive
reduction in the multi-objective function is selected and v is
moved to that partition.

3.3 Aggressve Multi-Phase Refinement

One of the potential problems with the multi-objective re-
finement algorithm described in Section 3.2 is that it is lim-
ited in the extent to which it can make large-scale pertur-
bations on the initial k-way partitioning produced by the
cut-focused recursive-bisectioning algorithm. This is due to
the combination of two factors. First, the greedy, non-hill
climbing nature of its refinement algorithm limits the per-
turbations that are explored, and second, since it is based on
an FM-derived framework, it is constrained to make moves
that do not violate the balancing constraints of the resulting
solution. As aresult (shown later in in our experiments (Sec-
tion 4)), it tends to produce solutions that retain the low-cut
characteristics of the initial k-way solution, but it does not
significantly reduce the maximum subdomain degree. Ide-
ally, we will like a multi-objective refinement algorithm that
is capable of effectively exploring the entire space of possible
solutions in order to select the one that best optimizes the
particular multi-objective function.

Toward this goal, we developed a multi-objective refinement
algorithm that allows large-scale perturbations of the par-
titioning produced by the recursive bisectioning algorithm.
This algorithm consists of five major steps as follows. Given
the initial k-way partitioning, in the first step, the algorithm
proceeds to further subdivide each of these partitions into 2!
parts (where [is a user specified parameter). During the sec-
ond step, this 2'k-way partitioning is refined using the direct
multi-phase refinement algorithm described in Section 3.2 to
optimize the particular multi-objective function. Each of the
resulting 2'k partitions are then collapsed into single nodes,
that we will refer to them as macro nodes. Now, during
the third step, a k-way partitioning of these macro nodes
is computed, such that each partition has exactly 2! macro
nodes. In the fourth step, the quality in terms of the par-
ticular multi-objective function of the resulting macro-node
level partitioning is improved using a randomized pair-wise
node swapping algorithm. In this algorithm, two nodes be-
longing to different partitions are randomly selected and the
quality of the partitioning resulting by their swap is evalu-
ated in terms of the particular multi-objective function. If
that swap leads to a better solution, the swap is performed,
otherwise it is not. Finally, in the fifth step, the macro-
node based partitioning is used to induce a partitioning of
the original hypergraph, which is then further improved us-
ing the direct multi-phase refinement algorithm described in

Section 3.2.

The key idea in the above algorithm is the macro-node-level
swapping-based refinement algorithm. This algorithm al-
lows us to move large portions of the hypergraph between
partitions without having to either violate the balancing
constraints or rely on a sequence of small vertex-moves in-
order to achieve the same effect. Moreover, because by con-
struction, each macro-node corresponds to a good cluster
(as opposed to a random collection of nodes) of roughly the
same size, such swaps can indeed lead to improved qual-
ity. Note that the choice of the randomized swapping-based
refinement approach was primarily done because of its low
computational complexity, and in principle, Kernighan-Lin-
based direct k-way refinement algorithms can be used in-
stead.

One of the key elements of this aggressive refinement algo-
rithm is the method used to obtain the initial k-way parti-
tioning of the macro-nodes. In our study we implemented
two different approaches for computing that partitioning.
The first approach focuses on computing an initial partition-
ing that has low cut, by inheriting the original k-way parti-
tioning of the hypergraph. We will refer to this as the Cut-
Focused Macro-Node Partitioning approach. On the other
hand, the second approach focuses on computing an initial
partitioning that has low maximum subdomain degree by
greedily combining macro-nodes that lead to the smallest
maximum subdomain degree. For [= 1, this combining is
done by sorting all possible pairings of macro-nodes in in-
creasing order of their resulting subdomain degree, and then
traversing the list in that order to identify the pairs of un-
matched macro-nodes to form the initial partitioning. When
1 > 1, such an approach is not computationally feasible and
for this reason we repeatedly apply the above scheme [times.
We will refer to this as the Max-Degree-Focused Macro-Node
Partitioning approach.

Finally, the key parameter of this scheme is the value of
l, which controls the granularity of the macro-nodes that
are used. In particular, the effectiveness of the random-
ized swapping-based refinement can be affected both for
small as well as large values of [. Small values may lead
to large macro-nodes whose swaps do not improve the qual-
ity, whereas large values may lead to small macro-nodes that
require a coordinated sequence of swaps (which are not per-
formed by our greedy algorithm) to achieve the desired per-
turbations. Moreover, large values of [have the additional
drawback of increasing the overall runtime of the algorithm
as it requires more time to obtain the initial clusters and
more refinement time. Fortunately, the fact that the result-
ing solution is refined at the end using the direct multi-phase
refinement algorithm allows this approach to use reasonably
small values of ! and still achieve good results (as the ex-
periments in Section 4 show) because the final multi-phase
refinement step is capable of performing the type of per-
turbations that will be performed for large values of I. In
particular, our experiments show that [= 2 leads to the best
overall results.

4. EXPERIMENT AL RESULTS

We experimentally evaluated our multi-objective partition-
ing algorithms on the 18 hypergraphs that are part of the

ISPD98 circuit partitioning benchmark suite [3]. The char-
acteristics of these hypergraphs are shown in Table 2. For
each of these circuits, we computed a 4-, 8-, 16-, 32-, and 64-
way partitioning solution using the recursive bisection-based
partitioning routine of hMELS 1.5.3 [16] and the various al-
gorithms that we developed for minimizing the maximum
subdomain degree. The hMEIDS solutions were obtained by
using a 49-51 bisection balance constraint and hMEILS’s de-
fault set of parameters. Since these balance constraints are
specified at each bisection level, the final k-way partition-
ing may have a somewhat higher load imbalance. To ensure
that the results produced by our algorithm can be easily
compared against those produced by hMELIS, we used the re-
sulting minimum and maximum partition sizes obtained by
hMEILS as the balancing constraints for our multi-objective
k-way refinement algorithm.

Benchmark | No. of vertices | No. of hyperedges
ibm01 12506 14111
ibm02 19342 19584
ibm03 22853 27401
ibm04 27220 31970
ibm05 28146 28446
ibm06 32332 34826
ibm07 45639 48117
ibm08 51023 50513
ibm09 53110 60902
ibm10 68685 75196
ibm11 70152 81454
ibm12 70439 77240
ibm13 83709 99666
ibm14 147088 152772
ibm15 161187 186608
ibm16 182980 190048
ibm17 184752 189581
ibm18 210341 201920

Table 2: The characteristics of the hypergraphs used
to evaluate our algorithm.

The quality of the solutions produced by our algorithm and
those produced by hMFEIS were evaluated by looking at three
different quality measures, which are the maximum subdo-
main degree, the cut, and the average subdomain degree.
To ensure the statistical significance of our experimental re-
sults, these measures were averaged over ten different runs
for each particular set of experiments.

Furthermore, due to space constraints, our comparisons against

hMEIIS are presented in a summary form, which shows the
relative maximum subdomain degree (RMaz), relative cut
(RCut), and relative average degree (RDeg) achieved by our
algorithms over those achieved by hMEIS averaged over the
entire set of 18 benchmarks. To ensure the meaningful av-
eraging of these ratios, we first took their log,-values, cal-
culated their mean pu, and then used 2* as their average.
This method ensures that ratios corresponding to compara-
ble degradations or improvements (i.e., ratios that are less
than or greater than one) are given equal importance.

4.1 DirectMulti-Phase Refinement

Our first set of experiments was focused on evaluating the
effectiveness of the direct multi-phase refinement algorithm
described in Section 3.2. Toward this goal we performed a
series of experiments using both formulations of the multi-

objective problem definition described in Section 3.1. The
performance achieved in these experiments relative to those
obtained by hMELS’s recursive bisectioning algorithm is shown
in Table 3. Specifically, this table shows four sets of results.
The first set uses the priority-based multi-objective formu-
lation whereas the remaining three sets use Equation 1 to
combine the two different objectives. The objectives were
combined using three different values of «, namely 1,2, and
k (where k is the number of partitions that is computed),
and B was kept fixed at one.

The results of Table 3 show that irrespective of the num-
ber of partitions or the particular multi-objective formula-
tion, the direct multi-phase refinement algorithm produces
solutions whose average quality along each one of the three
different quality measures is better than the corresponding
solutions produced by hMFEILIS. As expected, the relative im-
provements are higher for the maximum subdomain degree.
In particular, depending on the number of partitions, the
direct multi-phase refinement algorithm reduces the maxi-
mum subdomain degree by 5% to 17%. The relative im-
provements increase as the number of partitions increase,
because as the results in Table 1 showed, these are the par-
titioning solutions in which the maximum subdomain degree
is significantly higher than the average and thus there is sig-
nificantly more room for improvement.

Furthermore, the direct multi-phase refinement algorithm
also leads to partitionings that on the average have lower
cut and average subdomain degree. Specifically, the cut
tends to improve by 1% to 4%, whereas the average sub-
domain degree improves by 5% to 14%. Finally, comparing
the different multi-objective formulations we can see that in
general, there are very few differences between them, with
both of them leading to comparable solutions.

4.2 Aggressve Multi-Phase Refinement

Our second set of experiments was focused on evaluating
the effectiveness of the aggressive multi-phase refinement
algorithm described in Section 3.3. Toward this goal we
performed a series of experiments in which we used both
formulations of the multi-objective problem definition, dif-
ferent values of I, and both methods for computing the ini-
tial macro-node level-based partitioning. The performance
achieved in these experiments relative to those obtained by
hMFIIS’s recursive bisectioning algorithm is shown in Ta-
ble 4. Specifically, for each value of [, this table shows four
sets of results. The first two sets were obtained using the
priority-based multi-objective formulation whereas the re-
maining two sets used the combining scheme. Due to space
constraints, we only present results in which the two objec-
tives were combined using o = k, and 8 = 1. Finally, for
each set of experiments, Table 4 shows the results obtained
for the cases in which the initial macro-node partitioning
was computed using the cut- and the max-degree-focused
approaches.

From these results, we can observe a number of general
trends about the performance of the aggressive multi-phase
refinement algorithm and its sensitivity to the various pa-
rameters. In particular, as [increases from one to two
(i.e., each partition is further subdivided into two or four
parts), the effectiveness of the multi-objective partitioning

algorithm to produce solutions that have lower maximum
subdomain degree compared to the solutions obtained by
hMERS, improves. In general, for [= 1, the multi-objective
algorithm reduces the maximum subdomain degree by 5%
to 38%, whereas for | = 2, the corresponding improvements
range from 7% to 53%. However, these improvements lead to
solutions in which the cut and the average subdomain degree
obtained for [= 2 are somewhat higher than those obtained
for I = 1. For example, for [= 1, the multi-objective algo-
rithm is capable of improving the cut over hMERS by 0% to
3%, whereas for | = 2, the multi-objective algorithm leads to
solutions whose cut is up to 5% worse than those obtained
by hMETIS. Note that these observations are to a large extent
independent of the particular multi-objective formulation or
the method used to obtain the initial macro-node-level par-
titioning.

For | = 3, the trend of continuing improvements in the max-
imum subdomain degree does not hold, and in general, the
multi-objective algorithm leads to solutions that are worse
than those obtained for [= 2. We believe that the reason
for that is the fact that, as discussed in Section 3.3, at this
level of granularity, the macro-node level swapping scheme
is not very effective because it operates on relatively small
macro-nodes and requires coordinated exchange of nodes in
order to be effective.

Also, these results show that the aggressive multi-phase re-
finement algorithm is to a large extent insensitive on the
particular multi-objective function and scheme used to com-
pute the initial macro-node partitioning. The only exception
occurs for the cut-focused initial partitioning scheme, for
which the priority-based scheme leads to consistently bet-
ter solutions that those obtained by the combined scheme.
The cause of this performance difference is currently under
investigation.

Finally, comparing the results obtained by the aggressive
multi-phase refinement with the corresponding results ob-
tained by the direct multi-phase refinement algorithm (Ta-
bles 4 and 3), we can see that in terms of the maximum
subdomain degree, the aggressive scheme leads to substan-
tially better solutions than those obtained by the direct
scheme, whereas in terms of the cut and the average sub-
domain degree, the direct scheme is superior. These results
are in agreement with the design principles behind these
two multi-phase refinement schemes for the multi-objective
optimization problem at hand, and illustrate that the for-
mer is capable of making relatively large perturbations on
the initial partitioning obtained by recursive bisectioning,
as long as these perturbations improve the multi-objective
function. In general, the aggressive multi-phase refinement
scheme with [= 1, dominates the direct scheme, as it leads
to better improvements in terms of maximum subdomain
degree and still improves over hMETS in terms of cut and
average degree. However, if the goal is to achieve the highest
reduction in the maximum average degree, then the aggres-
sive scheme with [= 2 should be the preferred choice, as it
does so with relatively little degradation on the cut.

4.3 Runtime Complexity
Table 5 shows the amount of time required by the various
multi-objective partitioning algorithms using either direct

Prioritized Combined, @ = 1,8 =1 | Combined, «a = 2,8 =1 | Combined, a =k, =1
k | RMax | RCut | RDeg | RMax | RCut | RDeg | RMax | RCut | RDeg | RMax | RCut | RDeg
4 | 0.955 | 0.981 | 0.948 | 0.940 | 0.967 | 0.934 | 0.928 | 0.964 | 0.931 0.929 | 0.967 | 0.934
8 | 0.890 | 0.967 | 0.913 | 0.877 | 0.947 | 0.892 0.886 | 0.952 | 0.897 | 0.881 | 0.959 | 0.906
16 | 0.884 | 0.969 | 0.898 | 0.876 | 0.958 | 0.886 0.886 | 0.965 | 0.894 | 0.886 | 0.966 | 0.894
32 | 0.865 | 0.967 | 0.886 | 0.874 | 0.959 | 0.874 | 0.871 | 0.963 | 0.877 | 0.870 | 0.964 | 0.878
64 | 0.851 | 0.970 | 0.880 | 0.864 | 0.966 | 0.872 0.876 | 0.970 | 0.875 0.859 | 0.969 | 0.875

Table 3: Direct Multi-Phase Refinement Results. RMaxz, RCut, and RDeg are the average maximum sub-
domain degree, cut, and average subdomain degree, respectively of the multi-objective solution relative to
hMERS. Numbers less than one indicate that the multi-objective algorithm produces solutions that have lower
maximum subdomain degree, cut, or average subdomain degree than those produced by hMEIS.

=1
Prioritized Combined, a =k, =1
Cut-Focused Max-Degree-Focused Cut-Focused Max-Degree-Focused
k | RMax | RCut | RDeg | RMax | RCut | RDeg | RMax | RCut | RDeg | RMax | RCut | RDeg
4 | 0923 | 0.989 | 0.955 | 0.927 | 0.990 | 0.958 | 0.910 | 0.970 | 0.939 | 0.904 | 0.972 | 0.941
8 | 0.842 | 0.984 | 0.934 | 0.838 | 0.995 | 0.945 | 0.832 | 0.974 | 0.923 | 0.834 | 0.992 | 0.943
16 | 0.799 | 0.994 | 0.932 | 0.787 | 1.005 | 0.942 | 0.813 | 0.994 | 0.929 | 0.795 | 1.000 | 0.935
32 | 0.757 | 0.991 | 0.919 | 0.754 | 0.993 | 0.923 | 0.797 | 0.992 | 0.919 | 0.758 | 0.991 | 0.917
64 | 0.722 | 0.993 | 0.911 | 0.724 | 0.996 | 0.916 | 0.758 | 0.992 | 0.903 | 0.721 | 0.993 | 0.905
1=2
Prioritized Combined, a =k, =1
Cut-Focused Max-Degree-Focused Cut-Focused Max-Degree-Focused
k | RMax | RCut | RDeg | RMax | RCut | RDeg | RMax | RCut | RDeg | RMax | RCut | RDeg
4 | 0932 | 0.999 | 0.966 | 0.938 | 1.021 | 0.991 | 0.902 | 0.974 | 0.943 | 0.905 | 0.992 | 0.963
8 | 0.824 | 1.011 | 0.963 | 0.825 | 1.046 | 1.004 | 0.821 | 0.994 | 0.945 | 0.814 | 1.041 | 1.001
16 | 0.760 | 1.020 | 0.971 | 0.749 | 1.049 | 1.008 | 0.786 | 1.014 | 0.962 | 0.751 | 1.048 | 1.003
32 | 0.702 | 1.021 | 0.969 | 0.693 | 1.041 | 0.991 | 0.741 | 1.019 | 0.958 | 0.689 | 1.033 | 0.976
64 | 0.663 | 1.028 | 0.971 | 0.654 | 1.040 | 0.983 | 0.718 | 1.032 | 0.963 | 0.652 | 1.041 | 0.974
=3
Prioritized Combined, a =k, =1
Cut-Focused Max-Degree-Focused Cut-Focused Max-Degree-Focused
k | RMax | RCut | RDeg | RMax | RCut | RDeg | RMax | RCut | RDeg | RMax | RCut | RDeg
4 | 0958 | 1.011 | 0.977 | 1.007 | 1.121 | 1.091 | 0.911 | 0.976 | 0.943 | 0.950 | 1.058 | 1.029
8 | 0.847 | 1.006 | 0.957 | 0.848 | 1.119 | 1.088 | 0.834 | 0.988 | 0.937 | 0.842 | 1.109 | 1.073
16 | 0.768 | 1.018 | 0.964 | 0.759 | 1.101 | 1.070 | 0.791 | 1.012 | 0.952 | 0.754 | 1.077 | 1.034
32 | 0.720 | 1.020 | 0.968 | 0.697 | 1.095 | 1.059 | 0.759 | 1.023 | 0.964 | 0.700 | 1.064 | 1.010
64 | 0.727 | 1.035 | 0.977 | 0.701 | 1.100 | 1.052 | 0.788 | 1.050 | 0.980 | 0.663 | 1.066 | 1.006

Table 4: Aggressive Multi-Phase Refinement Results.
subdomain degree, cut, and average subdomain degree, respectively of the multi-objective solution relative
to hMENS. Numbers less than one indicate that the multi-objective algorithm produces solutions that have
lower maximum subdomain degree, cut, or average subdomain degree than those produced by hMERS.

or aggressive multi-phase refinement. For each value of k
and particular multi-objective algorithm, this table shows
the total amount of time that was required to partition all
18 benchmarks relative to the amount of time required by
hMELS to compute the corresponding partitionings. From
these results we can see that the multi-objective algorithm
that uses the direct multi-phase refinement is the least com-
putationally expensive and requires around 50% more time
than hMELS does. On the other hand, the time required by
the aggressive multi-phase refinement schemes is somewhat
higher and increases with the value of I. However, even for
this algorithm, its overall computational requirements are
relatively small. For instance, for [=1 and | = 2 (the cases
in which the aggressive multi-phase refinement scheme led
to the best results) it only requires two and three times more
time than hMERS, respectively.

5. CONCLUSIONS AND FUTURE WORK

RMaz, RCut, and RDeg are the average maximum

k | Direct | Aggres.,l =1 | Aggres.,l =2 | Aggres.,[=3
4 1.431 2.081 2.794 3.809
8 1.399 2.151 2.990 3.924
16 | 1.397 2.029 3.018 3.584
32 | 1.450 2.018 2.763 3.599
64 | 1.535 2.060 3.067 4.522

Table 5: The amount of time required by the multi-
objective algorithms relative to that required by
hMEFTIS.

In this paper we presented a family of multi-objective hy-
pergraph partitioning algorithms for computing k-way parti-
tionings that simultaneously minimize the cut and the max-
imum subdomain degree of the resulting partitions. Our
experimental evaluation showed that these algorithms are
quite effective in optimizing these two objectives with rela-
tively low computational requirements. The key factor con-
tributing to the success of these algorithms was the idea of

focusing on the maximum subdomain degree objective once
a good solution with respect to the cut has been identified.
We believe that such a framework can be applied to a num-
ber of other multi-objective problems involving objectives
that are reasonably well-correlated with each other.

The multi-objective algorithms presented here can be im-
proved in a number of directions. In particular, our re-
sults showed that the aggressive multi-phase refinement ap-
proach, though promising, can lead to worse solutions for
relatively large values of [. Using and developing better
and more powerful refinement algorithms at the macro-node
level can potentially address some of these shortcomings.

Also, our work so far was focused on producing multi-objective

solutions, which satisfy the same balancing constraints as
those resulting from the initial recursive bisectioning based
solution. However, additional improvements can be obtained
by relaxing the lower-bound constraint. Our preliminary re-
sults with such an approach appears promising.

6. REFERENCES

[1] C. Ababei, N. Selvakkumaran, K. Bazargan, and
G. Karypis. Multi-objectivecircuit partitioning for cutsize
and path-based delay minimization. In Proceedings of
ICCAD, 2002. Also available on WWW at URL
http://www.cs.umn.edu/ karypis.
C. Alpert and A. Kahng. A hybrid multilevel/genetic
approach for circuit partitioning. In Proceedings of the
Fifth ACM/SIGDA Physical Design Workshop, pages
100-105, 1996.

C. J. Alpert. The ISPD98 circuit benchmark suite. In Proc.
of the Intl. Symposium of Physical Design, pages 80-85,
1998.

C. J. Alpert, J. H. Huang, and A. B. Kahng. Multilevel
circuit partitioning. In Proc. of the 84th ACM/IEEE
Design Automation Conference, 1997.

C. J. Alpert and A. B. Kahng. Recent directions in netlist
partitioning. Integration, the VLSI Journal, 19(1-2):1-81,
1995.

A. E. Caldwell, A. B. Kahng, and I. L. Markov. Improved
algorithms for hypergraph bipartitioning. In Asia and

South Pacific Design Automation Conference, pages
661-666, 2000.

[7] J. Cong and S. K. Lim. Multiway partitioning with pairwise
movement. In Proceedings of ICCAD, pages 512-516, 1998.

J. Cong and M. L. Smith. A parallel bottom-up clustering
algorithm with applications to circuit partitioning in vlsi
design. In Proc. ACM/IEEE Design Automation
Conference, pages 755-760, 1993.

R. Cooley, B. Mobasher, and J. Srivastava. Web mining;:
Information and pattern discovery on the world wide web.
In International Conference on Tools with Artificial

Intelligence, pages 558-567, Newport Beach, 1997. IEEE.

[10] C. M. Fiduccia and R. M. Mattheyses. A linear time
heuristic for improving network partitions. In In Proc. 19th
IEEE Design Automation Conference, pages 175-181, 1982.

[11] S. Hauck and G. Borriello. An evaluation of bipartitioning
technique. In Proc. Chapel Hill Conference on Advanced
Research in VLSI, 1995.

[12] B. Hendrickson, R. Leland, and R. V. Driessche. Enhancing
data locality by using terminal propagation. In Proceedings
of the 29th Hawaii International Conference on System
Science, 1996.

G. Karypis. Multilevel hypergraph partitioning. In J. Cong
and J. Shinnerl, editors, Multilevel Optimization Methods
for VLSI, chapter 6. Kluwer Academic Publishers, Boston,
MA, 2002.

[2

3

[4

5

6

8

9

[13

[14] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: Application in vlsi
domain. IEEE Transactions on VLSI Systems, 20(1), 1999.
A short version appears in the proceedings of DAC 1997.

[15] G. Karypis, E. Han, and V. Kumar. Chameleon: A
hierarchical clustering algorithm using dynamic modeling.
IEEE Computer, 32(8):68-75, 1999.

[16] G. Karypis and V. Kumar. hMERS 1.5: A hypergraph
partitioning package. Technical report, Department of
Computer Science, University of Minnesota, 1998. Available
on the WWW at URL http://www.cs.umn.edu/ “metis.

[17] G. Karypis and V. Kumar. Multilevel k-way hypergraph
partitioning. VLSI Design, 2000.

[18] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, 49(2):291-307, 1970.

[19] P.Fishburn. Decision and Value Theory. J.Wiley & Sons,
New York, 1964.

[20] R.Keeney and H. Raiffa. Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. J.Wiley &
Sons, New York, 1976.

[21] L. Sanchis. Multiple-way network partitioning. IEEE
Trans. On Computers, 38(1):62-81, 1989.

[22] K. Schloegel, G. Karypis, and V. Kumar. A new algorithm
for multi-objective graph partitioning. In Proceedings of
FEuroPar ’99, pages 322-331, 1999.

[23] S. Shekhar and D. R. Liu. Partitioning similarity graphs: A
framework for declustering problmes. Information Systems
Journal, 21(4), 1996.

[24] H. D. Simon and S.-H. Teng. How good is recursive
bisection? Technical Report RNR-93-012, NAS Systems
Division, NASA, Moffet Field, CA, 1993.

[25] M. Wang, S. K. Lim, J. Cong, and M. Sarrafzadeh.
Multi-way partitioning using bi-partition heuristics. In
Proceedings of ASPDAC, pages 441-446. IEEE, January
2000.

[26] S. Wichlund and E. J. Aas. On Multilevel Circuit
Partitioning. In Intl. Conference on Computer Aided
Design, 1998.

[27] P. Yu. Multiple-Criteria Decision Making: Concepts,
Techniques, and Fzxtensions. Plenum Press, New York,
1985.

[28] H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite
graph partitioning and data clustering. In CIKM, 2001.

